The Basic Ingredients
Suppose we are working on a differential manifold M of dimension n, and have fixed natural numbers p and q with
- p + q = n.
Furthermore, we assume that we are given a SO(p, q) principal bundle B over M and a SO(p, q)-vector bundle V associated to B by means of the natural n-dimensional representation of SO(p, q). Equivalently, V is a rank n real vector bundle over M, equipped with a metric η with signature (p, q) (aka non degenerate quadratic form).
The basic ingredient of the Cartan formalism is an invertible linear map, between vector bundles over M where TM is the tangent bundle of M. The invertibility condition on e is sometimes dropped. In particular if B is the trivial bundle, as we can always assume locally, V has a basis of orthogonal sections . With respect to this basis is a constant matrix. For a choice of local coordinates on M (the negative indices are only to distinguish them from the indices labeling the ) and a corresponding local frame of the tangent bundle, the map e is determined by the images of the basis sections
They determine a (non coordinate) basis of the tangent bundle (provided e is invertible and only locally if B is only locally trivialised). The matrix is called the tetrad, vierbein, vielbein etc.. Its interpretation as a local frame crucially depends on the implicit choice of local bases.
Note that an isomorphism gives a reduction of the frame bundle, the principal bundle of the tangent bundle. In general, such a reduction is impossible for topological reasons. Thus, in general for continuous maps e, one cannot avoid that e becomes degenerate at some points of M.
Read more about this topic: Cartan Formalism (physics)
Famous quotes containing the words basic and/or ingredients:
“It seems to me that our three basic needs, for food and security and love, are so mixed and mingled and entwined that we cannot straightly think of one without the others. So it happens that when I write of hunger, I am really writing about love and the hunger for it, and warmth and the love of it and the hunger for it ... and then the warmth and richness and fine reality of hunger satisfied ... and it is all one.”
—M.F.K. Fisher (b. 1908)
“Copernicanism and other essential ingredients of modern science survived only because reason was frequently overruled in their past.”
—Paul Feyerabend (19241994)