Cartan Involutions On Lie Algebras
Let be a real semisimple Lie algebra and let be its Killing form. An involution on is a Lie algebra automorphism of whose square is equal to the identity. Such an involution is called a Cartan involution on if is a positive definite bilinear form.
Two involutions and are considered equivalent if they differ only by an inner automorphism.
Any real semisimple Lie algebra has a Cartan involution, and any two Cartan involutions are equivalent.
Read more about this topic: Cartan Decomposition
Famous quotes containing the word lie:
“Love is a great thing. It is not by chance that in all times and practically among all cultured peoples love in the general sense and the love of a man for his wife are both called love. If love is often cruel or destructive, the reasons lie not in love itself, but in the inequality between people.”
—Anton Pavlovich Chekhov (18601904)