Cartan Connection

A Cartan connection consists of a coordinate atlas of open sets U in M, along with a g-valued 1-form θU defined on each chart such that

  1. θU : TUg.
  2. θU mod h : TuUg/h is a linear isomorphism for every uU.
  3. For any pair of charts U and V in the atlas, there is a smooth mapping h : UVH such that
where ωH is the Maurer-Cartan form of H.

By analogy with the case when the θU came from coordinate systems, condition 3 means that φU is related to φV by h.

The curvature of a Cartan connection consists of a system of 2-forms defined on the charts, given by

ΩU satisfy the compatibility condition:

If the forms θU and θV are related by a function h : UVH, as above, then ΩV = Ad(h-1) ΩU

The definition can be made independent of the coordinate systems by forming the quotient space

of the disjoint union over all U in the atlas. The equivalence relation ~ is defined on pairs (x,h1) ∈ U1 × H and (x, h2) ∈ U2 × H, by

(x,h1) ~ (x, h2) if and only if xU1U2, θU1 is related to θU2 by h, and h2 = h(x)-1 h1.

Then P is a principal H-bundle on M, and the compatibility condition on the connection forms θU implies that they lift to a g-valued 1-form η defined on P (see below).

Famous quotes containing the word connection:

    We will have to give up the hope that, if we try hard, we somehow will always do right by our children. The connection is imperfect. We will sometimes do wrong.
    Judith Viorst (20th century)