Carrier Scattering - Defect Scattering

Defect Scattering

The dangling bond energy levels are eigenvalues of wavefunctions that describe electrons in the vicinity of the defects. In the typical consideration of carrier scattering, this corresponds to the final state in Fermi's Golden Rule of scattering frequency:

with H' being the interaction parameter and the Dirac delta function, δ(Ef-Ei), indicating elastic scattering. The simple relation 1/τ= Σk',k Sk'k makes this a useful equation for characterizing material transport properties when used in conjunction with σ = ne2τ /m* and Matthiessen's rule to incorporate other scattering processes.

The value of Sk'k is primarily determined by the interaction parameter, H'. This term is different depending on whether shallow or deep states are considered. For shallow states, H' is the perturbation term of the redefined Hamiltonian H=Ho+H', with Ho having an eigenvalue energy of Ei. The matrix for this case is

where k' is the final state wavevector of which there is only one value since the defect density is small enough to not form bands (~<1010/cm2). Using the Poisson equation for Fourier periodic point charges,
,
gives the Fourier coefficient of the potential from a dangling bond Vq=e/(q2εεrV) where V is volume. This results in

where qs is the Debye length wavevector correction due to charge screening. Then, the scattering frequency is

where n is the volumetric defect density. Performing the integration, utilizing |k|=|k'|, gives
.
The above treatment falters when the defects are not periodic since dangling bond potentials are represented with a Fourier series. Simplifying the sum by the factor of n in Eq (10) was only possible due to low defect density. If every atom (or possibly every other) were to have one dangling bond, which is quite reasonable for a non-reconstructed surface, the integral on k' must also be performed. Due to the use of perturbation theory in defining the interaction matrix, the above assumes small values of H' or, shallow defect states close to band edges. Fortunately, Fermi's Golden Rule itself is quite general and can be used for deep state defects if the interaction between conduction electron and defect is understood well enough to model their interaction into an operator that replaces H'.

Read more about this topic:  Carrier Scattering

Famous quotes containing the words defect and/or scattering:

    Mixed dinner parties of ladies and gentlemen ... are very rare, which is a great defect in the society; not only as depriving them of the most social and hospitable manner of meeting, but as leading to frequent dinner parties of gentlemen without ladies, which certainly does not conduce to refinement.
    Frances Trollope (1780–1863)

    A committee is organic rather than mechanical in its nature: it is not a structure but a plant. It takes root and grows, it flowers, wilts, and dies, scattering the seed from which other committees will bloom in their turn.
    C. Northcote Parkinson (1909–1993)