Neutrino Losses
Neutrino losses start to become a major factor in the fusion processes in stars at the temperatures and densities of carbon burning. Though the main reactions don't involve neutrinos, the side reactions such as the proton-proton chain reaction do. But the main source of neutrinos at these high temperatures involves a process in quantum theory known as pair production. A high energy gamma ray which has a greater energy than the rest mass of two electrons (mass-energy equivalence) can interact with electromagnetic fields of the atomic nuclei in the star, and become a particle and anti-particle pair of an electron and positron.
Normally, the positron quickly annihilates with another electron, producing two photons, and this process can be safely ignored at lower temperatures. But around 1 in 1019 pair productions end with a weak interaction of the electron and positron, which replaces them with a neutrino and anti-neutrino pair. Since they move at virtually the speed of light and interact very weakly with matter, these neutrino particles usually escape the star without interacting, carrying away their mass-energy. This energy loss is comparable to the energy output from the carbon fusion.
Neutrino losses, by this and similar processes, play an increasingly important part in the evolution of the most massive stars. They force the star to burn its fuel at a higher temperature to offset them. Fusion processes are very sensitive to temperature so the star can produce more energy to retain hydrostatic equilibrium, at the cost of burning through successive nuclear fuels ever more rapidly. Fusion produces less energy per unit mass as the fuel nuclei get heavier, and the core of the star contracts and heats up when switching from one fuel to the next, so both these processes also significantly reduce the lifetime of each successive fusion-burning fuel.
Up to helium burning, the neutrino losses are negligible, but from carbon burning the reduction in lifetime due to them roughly matches that due to fuel change and core contraction. In successive fuel changes in the most massive stars, the reduction in lifetime is dominated by the neutrino losses. For example, a star of 25 solar masses burns hydrogen in the core for 107 years, helium for 106 years and carbon for only 103 years.
Read more about this topic: Carbon-burning Process
Famous quotes containing the word losses:
“Hold back thy hours, dark Night, till we have done;
The Day will come too soon.
Young maids will curse thee, if thou stealst away
And leavst their losses open to the day.
Stay, stay, and hide
The blushes of the bride.”
—Francis Beaumont (1584-1616)