CAN Bus - Technology

Technology

CAN is a multi-master broadcast serial bus standard for connecting electronic control units (ECUs).

Each node is able to send and receive messages, but not simultaneously. A message consists primarily of an ID (identifier), which represents the priority of the message, and up to eight data bytes. It is transmitted serially onto the bus. This signal pattern is encoded in non-return-to-zero (NRZ) and is sensed by all nodes.

The devices that are connected by a CAN network are typically sensors, actuators, and other control devices. These devices are not connected directly to the bus, but through a host processor and a CAN controller.

If the bus is free, any node may begin to transmit. If two or more nodes begin sending messages at the same time, the message with the more dominant ID (which has more dominant bits, i.e., zeroes) will overwrite other nodes' less dominant IDs, so that eventually (after this arbitration on the ID.) only the dominant message remains and is received by all nodes. This mechanism is referred to as priority based bus arbitration. Messages with numerically smaller values of IDs have higher priority and are transmitted first.

Each node requires a

  • Host processor
    • The host processor decides what received messages mean and which messages it wants to transmit itself.
    • Sensors, actuators and control devices can be connected to the host processor.
  • CAN controller (hardware with a synchronous clock).
    • Receiving: the CAN controller stores received bits serially from the bus until an entire message is available, which can then be fetched by the host processor (usually after the CAN controller has triggered an interrupt).
    • Sending: the host processor stores its transmit messages to a CAN controller, which transmits the bits serially onto the bus.
  • Transceiver
    • Receiving: it adapts signal levels from the bus to levels that the CAN controller expects and has protective circuitry that protects the CAN controller.
    • Transmitting: it converts the transmit-bit signal received from the CAN controller into a signal that is sent onto the bus.

Bit rates up to 1 Mbit/s are possible at network lengths below 40 m. Decreasing the bit rate allows longer network distances (e.g., 500 m at 125 kbit/s).

The CAN data link layer protocol is standardized in ISO 11898-1 (2003). This standard describes mainly the data link layer (composed of the logical link control (LLC) sublayer and the media access control (MAC) sublayer) and some aspects of the physical layer of the OSI reference model. All the other protocol layers are the network designer's choice.

Read more about this topic:  CAN Bus

Famous quotes containing the word technology:

    Technology is not an image of the world but a way of operating on reality. The nihilism of technology lies not only in the fact that it is the most perfect expression of the will to power ... but also in the fact that it lacks meaning.
    Octavio Paz (b. 1914)

    Primitive peoples tried to annul death by portraying the human body—we do it by finding substitutes for the human body. Technology instead of mysticism!
    Max Frisch (1911–1991)

    If we had a reliable way to label our toys good and bad, it would be easy to regulate technology wisely. But we can rarely see far enough ahead to know which road leads to damnation. Whoever concerns himself with big technology, either to push it forward or to stop it, is gambling in human lives.
    Freeman Dyson (b. 1923)