Practical Applications of CAS
CAS has two primary applications in aviation:
- for navigation, CAS is traditionally calculated as one of the steps between indicated airspeed and true airspeed;
- for aircraft control, CAS (and EAS) are the primary reference points, since they describe the dynamic pressure acting on aircraft surfaces regardless of density altitude, wind, and other conditions. EAS is used as a reference by aircraft designers, but EAS cannot be displayed correctly at varying altitudes by a simple (single capsule) airspeed indicator. CAS is therefore a standard for calibrating the airspeed indicator such that CAS equals EAS at sea level pressure and approximates EAS at higher altitudes.
With the widespread use of GPS and other advanced navigation systems in cockpits, the first application is rapidly decreasing in importance – pilots are able to read groundspeed (and often true airspeed) directly, without calculating calibrated airspeed as an intermediate step. The second application remains critical, however – for example, at the same weight, an aircraft will rotate and climb at approximately the same calibrated airspeed at any elevation, even though the true airspeed and groundspeed may differ significantly. These V speeds are usually given as IAS rather than CAS, so that a pilot can read them directly from the airspeed indicator.
Read more about this topic: Calibrated Airspeed
Famous quotes containing the word practical:
“Whatever practical people may say, this world is, after all, absolutely governed by ideas, and very often by the wildest and most hypothetical ideas. It is a matter of the very greatest importance that our theories of things that seem a long way apart from our daily lives, should be as far as possible true, and as far as possible removed from error.”
—Thomas Henry Huxley (182595)