General Burnside Problem
A group G is called periodic if every element has finite order; in other words, for each g in G, there exists some positive integer n such that gn = 1. Clearly, every finite group is periodic. There exist easily defined groups such as the p∞-group which are infinite periodic groups; but the latter group cannot be finitely generated.
The general Burnside problem can be posed as follows:
- If G is a periodic group, and G is finitely generated, then must G necessarily be a finite group?
This question was answered in the negative in 1964 by Evgeny Golod and Igor Shafarevich, who gave an example of an infinite p-group that is finitely generated (see Golod-Shafarevich theorem). However, the orders of the elements of this group are not a priori bounded by a single constant.
Read more about this topic: Burnside's Problem
Famous quotes containing the words general and/or problem:
“The general feeling was, and for a long time remained, that one had several children in order to keep just a few. As late as the seventeenth century . . . people could not allow themselves to become too attached to something that was regarded as a probable loss. This is the reason for certain remarks which shock our present-day sensibility, such as Montaignes observation, I have lost two or three children in their infancy, not without regret, but without great sorrow.”
—Philippe Ariés (20th century)
“The problem of induction is not a problem of demonstration but a problem of defining the difference between valid and invalid
predictions.”
—Nelson Goodman (1906)