Burnside's Problem - General Burnside Problem

General Burnside Problem

A group G is called periodic if every element has finite order; in other words, for each g in G, there exists some positive integer n such that gn = 1. Clearly, every finite group is periodic. There exist easily defined groups such as the p∞-group which are infinite periodic groups; but the latter group cannot be finitely generated.

The general Burnside problem can be posed as follows:

If G is a periodic group, and G is finitely generated, then must G necessarily be a finite group?

This question was answered in the negative in 1964 by Evgeny Golod and Igor Shafarevich, who gave an example of an infinite p-group that is finitely generated (see Golod-Shafarevich theorem). However, the orders of the elements of this group are not a priori bounded by a single constant.

Read more about this topic:  Burnside's Problem

Famous quotes containing the words general and/or problem:

    The general feeling was, and for a long time remained, that one had several children in order to keep just a few. As late as the seventeenth century . . . people could not allow themselves to become too attached to something that was regarded as a probable loss. This is the reason for certain remarks which shock our present-day sensibility, such as Montaigne’s observation, “I have lost two or three children in their infancy, not without regret, but without great sorrow.”
    Philippe Ariés (20th century)

    The problem of induction is not a problem of demonstration but a problem of defining the difference between valid and invalid
    predictions.
    Nelson Goodman (1906)