Connection With BN Pairs
If a group G acts simplicially on a building X, transitively on pairs of chambers C and apartments A containing them, then the stabilisers of such a pair define a BN pair or Tits system. In fact the pair of subgroups
- B = GC and N = GA
satisfies the axioms of a BN pair and the Weyl group can identified with N / N B. Conversely the building can be recovered from the BN pair, so that every BN pair canonically defines a building. In fact, using the terminology of BN pairs and calling any conjugate of B a Borel subgroup and any group containing a Borel subgroup a parabolic subgroup,
- the vertices of the building X correspond to maximal parabolic subgroups;
- k + 1 vertices form a k-simplex whenever the intersection of the corresponding maximal parabolic subgroups is also parabolic;
- apartments are conjugates under G of the simplicial subcomplex with vertices given by conjugates under N of maximal parabolics containing B.
The same building can often be described by different BN pairs. Moreover not every building comes from a BN pair: this corresponds to the failure of classification results in low rank and dimension (see below).
Read more about this topic: Building (mathematics)
Famous quotes containing the words connection with and/or connection:
“... instinct is the direct connection with truth.”
—Laurette Taylor (18871946)
“We should always remember that the work of art is invariably the creation of a new world, so that the first thing we should do is to study that new world as closely as possible, approaching it as something brand new, having no obvious connection with the worlds we already know. When this new world has been closely studied, then and only then let us examine its links with other worlds, other branches of knowledge.”
—Vladimir Nabokov (18991977)