Bridge Probabilities - Number of Possible Deals

Number of Possible Deals

In total there are 53,644,737,765,488,792,839,237,440,000 (5.36 x 1028) different deals possible, which is equal to . The immenseness of this number can be understood by answering the question "How large an area would you need to spread all possible bridge deals if each deal would occupy only one square millimeter?". The answer is: an area more than a hundred million times the total area of the earth.

Obviously, the deals that are identical except for swapping—say—the ♥2 and the ♥3 would be unlikely to give a different result. To make the irrelevance of small cards explicit (which is not always the case though), in bridge such small cards are generally denoted by an 'x'. Thus, the "number of possible deals" in this sense depends of how many non-honour cards (2, 3, .. 9) are considered 'indistinguishable'. For example, if 'x' notation is applied to all cards smaller than ten, then the suit distributions A987-K106-Q54-J32 and A432-K105-Q76-J98 would be considered identical.

The table below gives the number of deals when various numbers of small cards are considered indistinguishable.

Suit composition Number of deals
AKQJT9876543x 53,644,737,765,488,792,839,237,440,000
AKQJT987654xx 7,811,544,503,918,790,990,995,915,520
AKQJT98765xxx 445,905,120,201,773,774,566,940,160
AKQJT9876xxxx 14,369,217,850,047,151,709,620,800
AKQJT987xxxxx 314,174,475,847,313,213,527,680
AKQJT98xxxxxx 5,197,480,921,767,366,548,160
AKQJT9xxxxxxx 69,848,690,581,204,198,656
AKQJTxxxxxxxx 800,827,437,699,287,808
AKQJxxxxxxxxx 8,110,864,720,503,360
AKQxxxxxxxxxx 74,424,657,938,928
AKxxxxxxxxxxx 630,343,600,320
Axxxxxxxxxxxx 4,997,094,488
xxxxxxxxxxxxx 37,478,624

Note that the last entry in the table (37,478,624) corresponds to the number of different distributions of the deck (the number of deals when cards are only distinguished by their suit).

Read more about this topic:  Bridge Probabilities

Famous quotes containing the words number of, number and/or deals:

    Even in ordinary speech we call a person unreasonable whose outlook is narrow, who is conscious of one thing only at a time, and who is consequently the prey of his own caprice, whilst we describe a person as reasonable whose outlook is comprehensive, who is capable of looking at more than one side of a question and of grasping a number of details as parts of a whole.
    G. Dawes Hicks (1862–1941)

    ... [woman suffrage] has made little difference beyond doubling the number of voters. There is no woman’s vote as such. They divide up just about as men do.
    Alice Roosevelt Longworth (1884–1980)

    In the domain of Political Economy, free scientific inquiry meets not merely the same enemies as in all other domains. The peculiar nature of the material it deals with, summons as foes into the field of battle the most violent, mean and malignant passions of the human breast, the Furies of private interest.
    Karl Marx (1818–1883)