Brain Fingerprinting - Future Applications and Research

Future Applications and Research

After Dr. Farwell invented Brain Fingerprinting, he withheld it from the public for 15 years while he, his colleagues, and other, independent scientists tested it in the laboratory and in the field (Farwell et al. 2006, ABC Good Morning America 2004). Farwell's decision to apply this science in real-life situations has been controversial (Dale 2001). In the years since Dr. Farwell first began applying the technology in the real world, proponents, including other scientists who have successfully applied the technique such as FBI scientist Drew Richardson, and those who have been freed or otherwise helped by brain fingerprinting, have advocated continuing and expanded application of the technology in the real world (Farwell et al. 2006, ABC Good Morning America 2004, CBS 60 Minutes 2000). Critics, including some scientists, and those whose criminal activities have been thwarted by brain fingerprinting have advocated further delay in applying the technique (Fox 2006b, Abdollah 2003, Rosenfeld 2005, KTVO-TV 1999).

According to sworn testimony by Dr. William Iacono, an independent expert unaffiliated with Dr. Farwell who has conducted extensive research in the area, the science underlying brain fingerprinting has been published in hundreds, perhaps thousands, of articles in the scientific literature, and the specific application of this science in detecting information has been published in about 50 studies (Harrington v. State 2001). (For more information on the science and its acceptance in the scientific community, see P300.) Although the science is well established, opinions among scientists and others on the social policy question of how and when this science should be applied vary widely (Fox 2006b, Abdollah 2003). Dr. Farwell's decision to apply this science in bringing criminals to justice (Dalbey 1999) and freeing innocent suspects (Harrington v. State 2001) is controversial (Fox 2006b, Abdollah 2003, Dale 2001, ABC Good Morning America 2004, CBS 60 Minutes 2000). Various other attempts to apply this science in the detection of concealed information have varied in accuracy and efficacy, depending on the scientific procedures used (Harrington v. State 2001).

Farwell and colleagues (e.g. Farwell & Smith 2001) as well as other, independent scientists who have precisely replicated Farwell's research or used similar methods (e.g., Iacono and colleagues, Allen & Iacono 1997), have obtained accuracy rates approaching 100% in both laboratory and field conditions (Farwell et al. 2006, Farwell & Richardson 2006).

Different scientific methods, however, have yielded different results. In P300-based tests using different experimental methods, different brain responses, different stimulus types, different data collection methods, different analysis methods, and different statistics from those used in Farwell's brain fingerprinting, Rosenfeld reported accuracy rates close to those obtained by chance, even without countermeasures (Rosenfeld et al. 2004). Moreover, Rosenfeld's alternative technique proved susceptible to countermeasures (Rosenfeld et al. 2004). (For scientific and methodological differences between Farwell's brain fingerprinting and Rosenfeld's alternative technique, see Farwell & Smith 2001.)

Controversy has arisen over the best explanation for the fact that Farwell and others who use similar scientific methods have achieved near-100% accuracy (Farwell et al. 2006), while Rosenfeld's alternative method yielded variable accuracy, sometimes as low as chance (Rosenfeld et al. 2004).

Farwell, FBI scientists Drew Richardson and Sharon Smith, and other brain fingerprinting experts claim that one cannot necessarily expect to obtain the same accuracy as brain fingerprinting without following standard brain fingerprinting scientific protocols or similar methods, that Rosenfeld's failure to achieve accuracy rates comparable to those of brain fingerprinting is the result of the substantial differences in scientific methodology between his alternative technique and brain fingerprinting, and therefore the fact that Rosenfeld's alternative technique is admittedly inaccurate and susceptible to countermeasures (Rosenfeld et al. 2004) is no reflection on brain fingerprinting (Farwell & Smith 2001, Farwell & Richardson 2006, Farwell et al. 2006, Simon 2005).

Proponents advocate continuing the use of brain fingerprinting to bring criminals and terrorists to justice and to free innocent suspects, while at the same time more research is continuing. Dr. Farwell and former FBI scientist Dr. Drew Richardson are among the scientists who advocate continuing the use of brain fingerprinting in criminal investigations and counterterrorism, without delay, as well as ongoing research on the technology (Farwell & Richardson 2006, Simon 2005).

Dr. Farwell was interviewed by TIME magazine after he was selected to the TIME 100: The Next Wave, the 100 innovators who may be "the Picassos or Einsteins of the 21st Century." He said, "The fundamental task in law enforcement and espionage and counterespionage is to determine the truth. My philosophy is that there is a tremendous cost in failing to apply the technology." (Dale 2001)

Critics of brain fingerprinting claim that the inaccuracy and susceptibility to countermeasures of Rosenfeld's alternative technique also cast doubt on all P300-based information-detection techniques, including brain fingerprinting (Rosenfeld 2005). Critics agree with proponents that ongoing research on brain fingerprinting is valuable and desirable (Fox 2006b, Abdollah 2003). Unlike proponents, however, critics advocate a discontinuation of the use of brain fingerprinting in criminal and counterterrorism cases while this research is continuing (Fox 2006b, Abdollah 2003).

Proponents of the continued use of brain fingerprinting in criminal and counterterrorism cases cite the peer-reviewed research on the accuracy of brain fingerprinting in the laboratory and the field, the fact that it has been ruled admissible in court, the vital counterterrorism applications, and the benefits of bringing criminals such as serial killer JB Grinder to justice and freeing innocent convicts such as Terry Harrington. They emphasize the established science, the proven accuracy of brain fingerprinting when practiced according to standard brain fingerprinting scientific protocols, and the fact that brain fingerprinting is voluntary and non-invasive. They advocate continuing to use brain fingerprinting in criminal investigations and counterterrorism while research on the technique continues (ABC Good Morning America 2004 ABC-TV Good Morning America: Charles Gibson interviews Dr. Lawrence Farwell, CBS 60 Minutes: Mike Wallace interviews Dr. Lawrence Farwell, Simon 2005 "What you don’t know can’t hurt you," Law Enforcement Technology.

Critics cite the inaccuracy and susceptibility to countermeasures of Rosenfeld's alternative technique, and suggest that this casts doubt on brain fingerprinting as well (Rosenfeld 2005). They emphasize the uncertainty of applying new technology while it is still being researched, and advocate discontinuing the use of brain fingerprinting in criminal and counterterrorism cases until more research has been completed (Fox 2006b "Brain Fingerprinting Skepticism", Abdollah 2003 "Issues: Brain Fingerprinting").

Extensive criticism of brain fingerprinting is contained in Rosenfeld 2005. Dr. Farwell's brief response is contained in a peer-reviewed paper published in Scientific Review of Mental Health Practice, Farwell 2011a "Brain Fingerprinting: Corrections to Rosenfeld". A more comprehensive version of this paper that contains extensive documentation and references to independent sources where the facts can be verified is "Brain Fingerprinting: Comprehensive Corrections to Rosenfeld in Scientific Review of Mental Health Practice" (Farwell 2011b).

Those personally affected by brain fingerprinting have expressed divergent views as well, particularly on the issue of delaying the application of brain fingerprinting in criminal cases. Terry Harrington, for whom brain fingerprinting provided exculpatory evidence that was ruled admissible in court (Harrington v. State 2001, Farwell & Makeig 2005), and who was subsequently released from prison after serving 24 years for a murder he did not commit, has advocated continuing to apply brain fingerprinting in criminal cases while the research continues (CBS 60 Minutes 2000).

JB Grinder, whose 15-year string of serial rapes and murders was cut short after Farwell's brain fingerprinting test detected the record of the murder of Julie Helton stored in his brain, would have strongly preferred that applications of the technique in criminal investigations be delayed indefinitely (KTVO-TV 1999).

In the case of Jimmy Ray Slaughter, an Oklahoma court ruled that exculpatory evidence from a brain fingerprinting test conducted by Dr. Farwell was "untimely" and had been obtained too late to be used in his appeals (Slaughter v. State). Despite the "untimely" exculpatory evidence – which also included exculpatory DNA evidence, an FBI report discrediting key forensic evidence that had been used against him at trial, and the sworn testimony of the original chief investigator on his case, who became convinced that Slaughter was innocent – Slaughter was executed (Slaughter v. State). Until his execution, Slaughter strongly opposed any delay in applying brain fingerprinting in criminal cases on the grounds that any delay would cost more innocent lives, both of murder victims and of falsely convicted people – as he claimed to be himself – who could be saved by brain fingerprinting only if it was applied soon enough (ABC Good Morning America 2004).

Before Slaughter was executed, when it appeared that brain fingerprinting and other exculpatory evidence may have arrived in time to overturn his conviction, Farwell said, "When Jimmy Ray Slaughter came to me for help, he had a life expectancy of about 90 days. I had to say yes or no. I couldn't say 'wait'. I said yes, and I believe this was the right decision for me. If my already well-proven invention can save innocent lives while still more research is going on, I believe it is my responsibility as a scientist to make it available." (Witchalls 2004)

Dr. Farwell told Mike Wallace in an interview on CBS 60 Minutes, "Brain Fingerprinting is a scientific technique for determining whether certain information is stored in the brain or not by measuring brain waves, electrical brain activity. The fundamental difference between an innocent person and a guilty person is that a guilty person, having committed the crime, has the record stored in his brain. Now we have a way to measure that scientifically." (CBS 60 Minutes 2000)

In an interview with Charles Gibson on Good Morning America, Dr. Farwell stated, "We showed not only in the laboratory but in over 100 actual real-life situations that the technology was effective. And to date we have never gotten a wrong answer." (ABC Good Morning America 2004) ABC-TV Good Morning America: Charles Gibson interviews Dr. Lawrence Farwell

Read more about this topic:  Brain Fingerprinting

Famous quotes containing the words future and/or research:

    Such is the miraculous nature of the future of exiles: what is first uttered in the impotence of an overheated apartment becomes the fate of nations.
    Salman Rushdie (b. 1948)

    Men talk, but rarely about anything personal. Recent research on friendship ... has shown that male relationships are based on shared activities: men tend to do things together rather than simply be together.... Female friendships, particularly close friendships, are usually based on self-disclosure, or on talking about intimate aspects of their lives.
    Bettina Arndt (20th century)