BPP (complexity) - Definition

Definition

A language L is in BPP if and only if there exists a probabilistic Turing machine M, such that

  • M runs for polynomial time on all inputs
  • For all x in L, M outputs 1 with probability greater than or equal to 2/3
  • For all x not in L, M outputs 1 with probability less than or equal to 1/3

Unlike the complexity class ZPP, the machine M is required to run for polynomial time on all inputs, regardless of the outcome of the random coin flips.

Alternatively, BPP can be defined using only deterministic Turing machines. A language L is in BPP if and only if there exists a polynomial p and deterministic Turing machine M, such that

  • M runs for polynomial time on all inputs
  • For all x in L, the fraction of strings y of length p(|x|) which satisfy M(x,y) = 1 is greater than or equal to 2/3
  • For all x in not in L, the fraction of strings y of length p(|x|) which satisfy M(x,y) = 1 is less than or equal to 1/3

In this definition, the string y corresponds to the output of the random coin flips that the probabilistic Turing machine would have made. For some applications this definition is preferable since it does not mention probabilistic Turing machines.

Read more about this topic:  BPP (complexity)

Famous quotes containing the word definition:

    Mothers often are too easily intimidated by their children’s negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.
    Elaine Heffner (20th century)

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)