Geometric Model of Loop Spaces
One elegant formulation of Bott periodicity makes use of the observation that there are natural embeddings (as closed subgroups) between the classical groups. The loop spaces in Bott periodicity are then homotopy equivalent to the symmetric spaces of successive quotients, with additional discrete factors of Z.
Over the complex numbers:
Over the real numbers and quaternions:
These sequences corresponds to sequences in Clifford algebras – see classification of Clifford algebras; over the complex numbers:
Over the real numbers and quaternions:
where the division algebras indicate "matrices over that algebra".
As they are 2-periodic/8-periodic, they can be arranged in a circle, where they are called the Bott periodicity clock and Clifford algebra clock.
The Bott periodicity results then refine to a sequence of homotopy equivalences:
For complex K-theory:
For real and quaternionic KO- and KSp-theories:
The resulting spaces are homotopy equivalent to the classical reductive symmetric spaces, and are the successive quotients of the terms of the Bott periodicity clock. These equivalences immediately yield the Bott periodicity theorems.
The specific spaces are, (for groups, the principal homogeneous space is also listed):
Loop space | Quotient | Cartan's label | Description |
---|---|---|---|
BDI | Real Grassmannian | ||
Orthogonal group (real Stiefel manifold) | |||
DIII | space of complex structures compatible with a given orthogonal structure | ||
AII | space of quaternionic structures compatible with a given complex structure | ||
CII | Quaternionic Grassmannian | ||
Symplectic group (quaternionic Stiefel manifold) | |||
CI | complex Lagrangian Grassmannian | ||
AI | Lagrangian Grassmannian |
Read more about this topic: Bott Periodicity Theorem
Famous quotes containing the words geometric, model and/or spaces:
“New York ... is a city of geometric heights, a petrified desert of grids and lattices, an inferno of greenish abstraction under a flat sky, a real Metropolis from which man is absent by his very accumulation.”
—Roland Barthes (19151980)
“The playing adult steps sideward into another reality; the playing child advances forward to new stages of mastery....Childs play is the infantile form of the human ability to deal with experience by creating model situations and to master reality by experiment and planning.”
—Erik H. Erikson (20th century)
“Deep down, the US, with its space, its technological refinement, its bluff good conscience, even in those spaces which it opens up for simulation, is the only remaining primitive society.”
—Jean Baudrillard (b. 1929)