Born Rule - The Rule

The Rule

The Born rule states that if an observable corresponding to a Hermitian operator with discrete spectrum is measured in a system with normalized wave function (see bra-ket notation), then

  • the measured result will be one of the eigenvalues of, and
  • the probability of measuring a given eigenvalue will equal, where is the projection onto the eigenspace of corresponding to .
(In the case where the eigenspace of corresponding to is one-dimensional and spanned by the normalized eigenvector, is equal to, so the probability is equal to . Since the complex number is known as the probability amplitude that the state vector assigns to the eigenvector, it is common to describe the Born rule as telling us that probability is equal to the amplitude-squared (really the amplitude times its own complex conjugate). Equivalently, the probability can be written as .)

In the case where the spectrum of is not wholly discrete, the spectral theorem proves the existence of a certain projection-valued measure, the spectral measure of . In this case,

  • the probability that the result of the measurement lies in a measurable set will be given by .

If we are given a wave function for a single structureless particle in position space, this reduces to saying that the probability density function for a measurement of the position at time will be given by

Read more about this topic:  Born Rule

Famous quotes containing the word rule:

    This at least should be a rule through the letter-writing world: that no angry letter be posted till four-and-twenty hours will have elapsed since it was written.
    Anthony Trollope (1815–1882)

    It has come to be practically a sort of rule in literature, that a man, having once shown himself capable of original writing, is entitled thenceforth to steal from the writings of others at discretion. Thought is the property of him who can entertain it; and of him who can adequately place it. A certain awkwardness marks the use of borrowed thoughts; but, as soon as we have learned what to do with them, they become our own.
    Ralph Waldo Emerson (1803–1882)