Borel Subgroup - Parabolic Subgroups

Subgroups between a Borel subgroup B and the ambient group G are called parabolic subgroups. Parabolic subgroups P are also characterized, among algebraic subgroups, by the condition that G/P is a complete variety. Working over algebraically closed fields, the Borel subgroups turn out to be the minimal parabolic subgroups in this sense. Thus B is a Borel subgroup when the homogeneous space G/B is a complete variety which is "as large as possible".

For a simple algebraic group G, the set of conjugacy classes of parabolic subgroups is in bijection with the set of all subsets of nodes of the corresponding Dynkin diagram; the Borel subgroup corresponds to the empty set and G itself corresponding to the set of all nodes. (In general each node of the Dynkin diagram determines a simple negative root and thus a one dimensional 'root group' of G---a subset of the nodes thus yields a parabolic subgroup, generated by B and the corresponding negative root groups. Moreover any parabolic subgroup is conjugate to such a parabolic subgroup.)

Read more about this topic:  Borel Subgroup