Bond-dissociation Energy

Bond-dissociation Energy

In chemistry, bond-dissociation energy (BDE) or D0, is one measure of the strength in a chemical bond. It is defined as the standard enthalpy change when a bond is cleaved by homolysis, with reactants and products of the homolysis reaction at 0 K (absolute zero). For instance, the bond-dissociation energy for one of the C-H bonds in ethane (C2H6) is defined by the process:

CH3CH2-H → CH3CH2· + H·

D0 = ΔH = 101.1 kcal/mol (423.0 kJ/mol)

Read more about Bond-dissociation Energy:  Definitions of BDE and Related Parameters, Tabulated Data

Famous quotes containing the word energy:

    While the State becomes inflated and hypertrophied in order to obtain a firm enough grip upon individuals, but without succeeding, the latter, without mutual relationships, tumble over one another like so many liquid molecules, encountering no central energy to retain, fix and organize them.
    Emile Durkheim (1858–1917)