Bohr Effect - Physiological Role

Physiological Role

This effect facilitates oxygen transport as hemoglobin binds to oxygen in the lungs, but then releases it in the tissues, particularly those tissues in most need of oxygen. When a tissue's metabolic rate increases, its carbon dioxide production increases. Carbon dioxide forms bicarbonate through the following reaction:

CO2 + H2O H2CO3 H+ + HCO3

Although the reaction usually proceeds very slowly, the enzyme family of carbonic anhydrase, which is present in red blood cells, accelerates the formation of bicarbonate and protons. This causes the pH of tissues to decrease, and so, promotes the dissociation of oxygen from hemoglobin to the tissue, allowing the tissue to obtain enough oxygen to meet its demands. Conversely, in the lungs, where oxygen concentration is high, binding of oxygen causes hemoglobin to release protons, which combine with bicarbonate to drive off carbon dioxide in exhalation. Since these two reactions are closely matched, there is little change in blood pH.

The dissociation curve shifts to the right when carbon dioxide or hydrogen ion concentration is increased. This facilitates increased oxygen dumping. This mechanism allows for the body to adapt the problem of supplying more oxygen to tissues that need it the most. When muscles are undergoing strenuous activity, they generate CO2 and lactic acid as products of cellular respiration and lactic acid fermentation. In fact, muscles generate lactic acid so quickly that pH of the blood passing through the muscles will drop to around 7.2. As lactic acid releases its protons, pH decreases, which causes hemoglobin to release ~10% more oxygen.

Read more about this topic:  Bohr Effect

Famous quotes containing the word role:

    Whatever we’re doing, whoever we are, it isn’t enough. . . . Little wonder we have trouble finding role models to guide us through these shoals. No one less than God Herself could be all the things we’d like to be to all the people we’d like to feel approval from.
    Melinda M. Marshall (20th century)