Definition
Let (X, Σ, μ) be a measure space and B a Banach space. The Bochner integral is defined in much the same way as the Lebesgue integral. First, a simple function is any finite sum of the form
where the Ei are disjoint members of the σ-algebra Σ, the bi are distinct elements of B, and χE is the characteristic function of E. If μ(Ei) is finite whenever bi ≠ 0, then the simple function is integrable, and the integral is then defined by
exactly as it is for the ordinary Lebesgue integral.
A measurable function ƒ : X → B is Bochner integrable if there exists a sequence of integrable simple functions sn such that
where the integral on the left-hand side is an ordinary Lebesgue integral.
In this case, the Bochner integral is defined by
It can be shown that a function is Bochner integrable if and only if it lies in the Bochner space .
Read more about this topic: Bochner Integral
Famous quotes containing the word definition:
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)