Bitruncated Cubic Honeycomb

The bitruncated cubic honeycomb is a space-filling tessellation (or honeycomb) in Euclidean 3-space made up of truncated octahedra.

It is one of 28 uniform honeycombs. It has 4 truncated octahedra around each vertex.

It can be realized as the Voronoi tessellation of the body-centred cubic lattice.

Being composed entirely of truncated octahedra, it is cell-transitive. It is also edge-transitive, with 2 hexagons and one square on each edge, and vertex-transitive.

Although a regular tetrahedron can not tessellate space alone, the dual of this honeycomb has identical tetrahedral cells with isosceles triangle faces (called a disphenoid tetrahedron) and these do tessellate space. The dual of this honeycomb is the disphenoid tetrahedral honeycomb.

Lord Kelvin conjectured that a variant of the bitruncated cubic honeycomb (with curved faces and edges, but the same combinatorial structure) is the optimal soap bubble foam. However, the Weaire–Phelan structure is a less symmetrical, but more efficient, foam of soap bubbles.

Read more about Bitruncated Cubic Honeycomb:  Symmetry, Related Honeycombs

Famous quotes containing the word cubic:

    Mining today is an affair of mathematics, of finance, of the latest in engineering skill. Cautious men behind polished desks in San Francisco figure out in advance the amount of metal to a cubic yard, the number of yards washed a day, the cost of each operation. They have no need of grubstakes.
    Merle Colby, U.S. public relief program (1935-1943)