Birkhoff's Representation Theorem - Functoriality

Functoriality

Birkhoff's theorem, as stated above, is a correspondence between individual partial orders and distributive lattices. However, it can also be extended to a correspondence between order-preserving functions of partial orders and bounded homomorphisms of the corresponding distributive lattices. The direction of these maps is reversed in this correspondence.

Let 2 denote the partial order on the two-element set {0, 1}, with the order relation 0 < 1, and (following Stanley) let J(P) denote the distributive lattice of lower sets of a finite partial order P. Then the elements of J(P) correspond one-for-one to the order-preserving functions from P to 2. For, if ƒ is such a function, ƒ−1(0) forms a lower set, and conversely if L is a lower set one may define an order-preserving function ƒL that maps L to 0 and that maps the remaining elements of P to 1. If g is any order-preserving function from Q to P, one may define a function g* from J(P) to J(Q) that uses the composition of functions to map any element L of J(P) to ƒLg. This composite function maps Q to 2 and therefore corresponds to an element g*(L) = (ƒLg)−1(0) of J(Q). Further, for any x and y in J(P), g*(xy) = g*(x) ∧ g*(y) (an element of Q is mapped by g to the lower set xy if and only if belongs both to the set of elements mapped to x and the set of elements mapped to y) and symmetrically g*(xy) = g*(x) ∨ g*(y). Additionally, the bottom element of J(P) (the function that maps all elements of P to 0) is mapped by g* to the bottom element of J(Q), and the top element of J(P) is mapped by g* to the top element of J(Q). That is, g* is a homomorphism of bounded lattices.

However, the elements of P themselves correspond one-for-one with bounded lattice homomorphisms from J(P) to 2. For, if x is any element of P, one may define a bounded lattice homomorphism jx that maps all lower sets containing x to 1 and all other lower sets to 0. And, for any lattice homomorphism from J(P) to 2, the elements of J(P) that are mapped to 1 must have a unique minimal element x (the meet of all elements mapped to 1), which must be join-irreducible (it cannot be the join of any set of elements mapped to 0), so every lattice homomorphism has the form jx for some x. Again, from any bounded lattice homomorphism h from J(P) to J(Q) one may use composition of functions to define an order-preserving map h* from Q to P. It may be verified that g** = g for any order-preserving map g from Q to P and that and h** = h for any bounded lattice homomorphism h from J(P) to J(Q).

In category theoretic terminology, J is a contravariant hom-functor J = Hom(—,2) that defines a duality of categories between, on the one hand, the category of finite partial orders and order-preserving maps, and on the other hand the category of finite distributive lattices and bounded lattice homomorphisms.

Read more about this topic:  Birkhoff's Representation Theorem