Biomineralization - Evolution

Evolution

The first evidence of biomineralization dates to some 750 million years ago, and sponge-grade organisms may have formed calcite skeletons 630 million years ago. But in most lineages, biomineralization first occurred in the Cambrian or Ordovician periods. Organisms used whichever form of calcium carbonate was more stable in the water column at the point in time when they became biomineralized, and stuck with that form for the remainder of their biological history (but see for a more detailed analysis). The stability is dependent on the Ca/Mg ratio of seawater, which is thought to be controlled primarily by the rate of sea floor spreading, although atmospheric CO2 levels may also play a role.

Biomineralization evolved multiple times, independently, and most animal lineages first expressed biomineralized components in the Cambrian period. Interestingly, many of the same processes are used in unrelated lineages, which suggests that biomineralization machinery was assembled from pre-existing "off-the-shelf" components already used for other purposes in the organism. Although the biomachinery facilitating biomineralization is complex – involving signalling transmitters, inhibitors, and transcription factors – many elements of this 'toolkit' are shared between phyla as diverse as corals, molluscs, and vertebrates. The shared components tend to perform quite fundamental tasks, such as designating that cells will be used to create the minerals, whereas genes controlling more finely tuned aspects that occur later in the biomineralization process – such as the precise alignment and structure of the crystals produced – tend to be uniquely evolved in different lineages. This suggests that Precambrian organisms were employing the same elements, albeit for a different purpose — perhaps to avoid the inadvertent precipitation of calcium carbonate from the supersaturated Proterozoic oceans. Forms of mucus that are involved in inducing mineralization in most metazoan lineages appear to have performed such an anticalcifatory function in the ancestral state. Further, certain proteins that would originally have been involved in maintaining calcium concentrations within cells are homologous to all metazoans, and appear to have been co-opted into biomineralization after the divergence of the metazoan lineages. The galaxins are one probable example of a gene being co-opted from a different ancestral purpose into controlling biomineralization, in this case being 'switched' to this purpose in the Triassic scleractinian corals; the role performed appears to be functionally identical to the unrelated pearlin gene in molluscs. Carbonic anhydrase serves a role in mineralization in sponges, as well as metazoans, implying an ancestral role. Far from being a rare trait that evolved a few times and remained stagnant, biomineralization pathways in fact evolved many times and are still evolving rapidly today; even within a single genus it is possible to detect great variation within a single gene family.

The homology of biomineralization pathways is underlined by a remarkable experiment whereby the nacreous layer of a molluscan shell was implanted into a human tooth, and rather than experiencing an immune response, the molluscan nacre was incorporated into the host bone matrix. This points to the exaptation of an original biomineralization pathway.

The most ancient example of biomineralization, dating back 2 billion years, is the deposition of magnetite, which is observed in some bacteria, as well as the teeth of chitons and the brains of vertebrates; it is possible that this pathway, which performed a magentosensory role in the common ancestor of all bilaterians, was duplicated and modified in the Cambrian to form the basis for calcium-based biomineralization pathways. Iron is stored in close proximity to magnetite-coated chiton teeth, so that the teeth can be renewed as they wear. Not only is there a marked similarity between the magnetite deposition process and enamel deposition in vertebrates but some vertebrates even have comparable iron storage facilities near their teeth.

Type of mineralization Examples of organisms
Calcium carbonate (calcite or aragonite)
  • foraminifera
  • coccolithophores
  • calcareous sponge spicules
  • corals
  • Archaeocyatha
  • bryozoans
  • brachiopod and mollusc shells
  • Echinoderms
  • Serpulidae
Silica
  • radiolarians
  • diatoms
  • most sponge spicules
Apatite (phosphate carbonate)
  • enamel (Vertebrate teeth)
  • Vertebrate bone
  • conodonts

Read more about this topic:  Biomineralization

Famous quotes containing the word evolution:

    The more specific idea of evolution now reached is—a change from an indefinite, incoherent homogeneity to a definite, coherent heterogeneity, accompanying the dissipation of motion and integration of matter.
    Herbert Spencer (1820–1903)

    By contrast with history, evolution is an unconscious process. Another, and perhaps a better way of putting it would be to say that evolution is a natural process, history a human one.... Insofar as we treat man as a part of nature—for instance in a biological survey of evolution—we are precisely not treating him as a historical being. As a historically developing being, he is set over against nature, both as a knower and as a doer.
    Owen Barfield (b. 1898)

    The evolution of humans can not only be seen as the grand total of their wars, it is also defined by the evolution of the human mind and the development of the human consciousness.
    Friedrich Dürrenmatt (1921–1990)