Biofuel in The United States - Biofuel Companies

Biofuel Companies

Unfortunately, costs of producing ethanol from cellulosic feedstock such as wood chips are still about 70% higher than production from corn, because of an extra step in the production process, when compared to production of corn-derived ethanol. Until recently, the idea of extracting ethanol from farm waste and other sources was barely clinging to life in the recesses of university campuses and federal labs, because production problems, as well as the need to bring together a vast team of specialists. Consider: Finding a bacterium from a cow's intestinal tract or from elephant dung that has the correct enzyme to degrade cellulose, and then bringing in geneticists to modify that enzyme kept this discouraging feat from ever growing beyond its embryonic state. Now, that is all changing with a race by approximately thirty companies attempting to accomplish this alchemical feat, and in the process working directly or coordinating with: environmental groups, biotechnology firms, some major oil companies, chemical giants, auto makers, defense hawks, and venture capitalists. The winner will be whoever can make cellulosic ethanol in mass quantities for as little money per gallon as possible.

With the majority of such biofuel companies (Iogen Corporation, SunOpta's BioProcess Group, Genencor, Novozymes, Dyadic International, Inc. (DYAI), Kansas City-based Alternative Energy Sources, Inc., Flex Fuels USA based in Huntsville, Alabama (now owned by Alternative Energy Sources), or BRI Energy, LLC, Abengoa Bioenergy) located in North America, the United States is in a unique position to lead the way in the development, production, and sale of a new source of energy.

One notable company that deserves special mention is Archer-Daniels-Midland Company (ADM) which has already invested heavily into building approximately 100 corn-ethanol production plants, known as bio-refineries, and churns out about one-fifth of the country's ethanol supply. This occurred due to seasonal overcapacity in its corn syrup plants when surplus was available to produce ethanol. Moreover, ADM is in a unique position to utilize unused parts of the corn crop, and convert previously discarded waste into a viable product. The hull surrounding corn contains fiber that the Decatur, Illinois, grain-processing giant's ethanol-making microorganisms can not use. Figuring out how to convert the fiber into more sugar could increase the output of an existing corn-ethanol plant by 15%. Consequently, ADM wouldn't have to figure out how to collect a new source of biomass but merely use the existing infrastructure for gathering corn—resulting in an advantage over its competitors. ADM executives want government help to build a plant that could cost between $50 million and $100 million. Prescient in their position in the quest for success, ADM recently hired the head of petroleum refining at Chevron, Patricia A. Woertz, to metamorphasize ADM into the Exxon-Mobil of the ethanol industry. If ADM succeeds, it will catapult beyond the ethanol industry to compete with the larger, global energy industry. In essence, the old paradigm of processing a barrel of crude oil into gasoline will be replaced with processing a bushel of corn into ethanol.

Meanwhile DuPont, the chemical giant, is attempting to figure out how to construct a bio-refinery fueled by corn stover—the stalk and leaves that are left in the field after farmers harvest their crop. The company's goal is to make ethanol from cellulose as cheaply as from corn kernels by 2009. If it works, the technology could double the amount of ethanol produced by a field of corn.

Diversa Corporation, a biotech company based in San Diego, examined how biomass is converted into energy in the natural environment. They have found that the enzymes inherent in the bacteria and protozoa that inhabit the digestive tracts of the household termite efficiently convert 95% of cellulose into fermentable sugars. Using proprietary DNA extraction and cloning technologies, they were able to isolate the cellulose-degrading enzymes. By reenacting this natural process, the company created a cocktail of high-performance enzymes for industrial ethanol production enablers. Although still in the early stages of this work, the initial results are promising. Currently, these expensive enzymes cost about 25 cents per gallon of ethanol, although this price is very likely to decline by half in the coming years.

Construction of the first U.S. commercial plant producing cellulosic ethanol will commence in the State of Iowa in February 2007. The Voyager Ethanol plant in Emmetsburg, owned by POET, LLC, will be converted from a 50-million-US-gallon-per-year (190×10^3 m3/a) conventional corn dry mill facility into a 125-million-US-gallon-per-year (470×10^3 m3/a) commercial-scale biorefinery producing ethanol from not only corn but also the stalk, leaves, and cobs of the corn plant.

Most ethanol plants rely on natural gas to power their processing equipment. The process to be used at the Emmetsburg plant will enable the plant to make 11% more ethanol by weight of corn and 27% more by area of corn. The process cuts the need for fossil fuel power at the plant by 83% by using some of its own byproduct for power. The $200 million plant is scheduled to begin in February and take about 30 months to complete. Project completion is contingent upon partial funding from a USDOE grant, which is likely as the U.S. Government views the renewable energy project as a full-blown national security issue.

Green Plains Renewable Energy claims to be the fourth largest ethanol fuel producer in North America (as of February 2012).

Read more about this topic:  Biofuel In The United States

Famous quotes containing the word companies:

    Socialite women meet socialite men and mate and breed socialite children so that we can fund small opera companies and ballet troupes because there is no government subsidy.
    Sugar Rautbord, U.S. socialite fund-raiser and self-described “trash” novelist. As quoted in The Great Divide, book 2, section 7, by Studs Terkel (1988)