Example Binomial Test
Suppose we have a board game that depends on the roll of a die and attaches special importance to rolling a 6. In a particular game, the die is rolled 235 times, and 6 comes up 51 times. If the die is fair, we would expect 6 to come up 235/6 = 39.17 times. Is the proportion of 6s significantly higher than would be expected by chance, on the null hypothesis of a fair die?
To find an answer to this question using the binomial test, we consult the binomial distribution B(235,1/6) to determine the probability of finding exactly 51 sixes in a sample of 235 if the true probability of rolling a 6 on each trial is 1/6. We then find the probability of finding exactly 52, exactly 53, and so on up to 235, and add all these probabilities together. In this way, we calculate the probability of obtaining the observed result (51 6s) or a more extreme result (>51 6s) assuming that the die is fair. In this example, the result is 0.0265443, which indicates that observing 51 6s is unlikely (significant at the 5% level) to come from a die that is not loaded to give many 6s (one-tailed test).
Clearly a die could roll too few sixes as easily as too many and we would be just as suspicious, so we should use the two-tailed test which (for example) splits the 5% probability across the two tails.
Read more about this topic: Binomial Test
Famous quotes containing the word test:
“Preoccupation with money is the great test of small natures, but only a small test of great ones.”
—Sébastien-Roch Nicolas De Chamfort (17411794)