Brief History
Binary quadratic forms were considered already by Fermat, in particular, in the question of representations of numbers as sums of two squares. The theory of Pell's equation may be viewed as a part of the theory of binary quadratic forms. Lagrange in 1773 initiated the development of the general theory of quadratic forms. First systematic treatment of binary quadratic forms is due to Legendre. Their theory was advanced much further by Gauss in Disquisitiones Arithmeticae. He considered questions of equivalence and reduction and introduced composition of binary quadratic forms (Gauss and many subsequent authors wrote 2b in place of b; the modern convention allowing the coefficient of xy to be odd is due to Eisenstein). These investigations of Gauss strongly influenced both the arithmetical theory of quadratic forms in more than two variables and the subsequent development of algebraic number theory, where quadratic fields are replaced with more general number fields.
Read more about this topic: Binary Quadratic Form
Famous quotes containing the word history:
“The steps toward the emancipation of women are first intellectual, then industrial, lastly legal and political. Great strides in the first two of these stages already have been made of millions of women who do not yet perceive that it is surely carrying them towards the last.”
—Ellen Battelle Dietrick, U.S. suffragist. As quoted in History of Woman Suffrage, vol. 4, ch. 13, by Susan B. Anthony and Ida Husted Harper (1902)
“I believe that history has shape, order, and meaning; that exceptional men, as much as economic forces, produce change; and that passé abstractions like beauty, nobility, and greatness have a shifting but continuing validity.”
—Camille Paglia (b. 1947)