In mathematics, the binary octahedral group, name as 2O or <2,3,4> is a certain nonabelian group of order 48. It is an extension of the octahedral group O or (2,3,4) of order 24 by a cyclic group of order 2, and is the preimage of the octahedral group under the 2:1 covering homomorphism of the special orthogonal group by the spin group. It follows that the binary octahedral group is a discrete subgroup of Spin(3) of order 48.
The binary octahedral group is most easily described concretely as a discrete subgroup of the unit quaternions, under the isomorphism where Sp(1) is the multiplicative group of unit quaternions. (For a description of this homomorphism see the article on quaternions and spatial rotations.)
Read more about Binary Octahedral Group: Elements, Properties, Higher Dimensions
Famous quotes containing the word group:
“A little group of wilful men reflecting no opinion but their own have rendered the great Government of the United States helpless and contemptible.”
—Woodrow Wilson (18561924)