Bilinear Form - Relation To Tensor Products

Relation To Tensor Products

By the universal property of the tensor product, bilinear forms on V are in 1-to-1 correspondence with linear maps VVF. If B is a bilinear form on V the corresponding linear map is given by

vwB(v, w)

The set of all linear maps VVF is the dual space of VV, so bilinear forms may be thought of as elements of

(VV)* ≅ V*V*

Likewise, symmetric bilinear forms may be thought of as elements of Sym2(V*) (the second symmetric power of V*), and alternating bilinear forms as elements of Λ2V* (the second exterior power of V*).

Read more about this topic:  Bilinear Form

Famous quotes containing the words relation to, relation and/or products:

    We must get back into relation, vivid and nourishing relation to the cosmos and the universe. The way is through daily ritual, and is an affair of the individual and the household, a ritual of dawn and noon and sunset, the ritual of the kindling fire and pouring water, the ritual of the first breath, and the last.
    —D.H. (David Herbert)

    Unaware of the absurdity of it, we introduce our own petty household rules into the economy of the universe for which the life of generations, peoples, of entire planets, has no importance in relation to the general development.
    Alexander Herzen (1812–1870)

    But, most of all, the Great Society is not a safe harbor, a resting place, a final objective, a finished work. It is a challenge constantly renewed, beckoning us toward a destiny where the meaning of our lives matches the marvelous products of our labor.
    Lyndon Baines Johnson (1908–1973)