Bianchi Classification - Curvature of Bianchi Spaces

Curvature of Bianchi Spaces

The Bianchi spaces have the property that their Ricci tensors can be separated into a product of the basis vectors associated with the space and a coordinate-independent tensor.

For a given metric

(where

are 1-forms), the Ricci curvature tensor is given by:

where the indices on the structure constants are raised and lowered with which is not a function of .

Read more about this topic:  Bianchi Classification

Famous quotes containing the word spaces:

    Surely, we are provided with senses as well fitted to penetrate the spaces of the real, the substantial, the eternal, as these outward are to penetrate the material universe. Veias, Menu, Zoroaster, Socrates, Christ, Shakespeare, Swedenborg,—these are some of our astronomers.
    Henry David Thoreau (1817–1862)