Bew - Relationship With Computability

Relationship With Computability

The incompleteness theorem is closely related to several results about undecidable sets in recursion theory.

Stephen Cole Kleene (1943) presented a proof of Gödel's incompleteness theorem using basic results of computability theory. One such result shows that the halting problem is undecidable: there is no computer program that can correctly determine, given a program P as input, whether P eventually halts when run with a particular given input. Kleene showed that the existence of a complete effective theory of arithmetic with certain consistency properties would force the halting problem to be decidable, a contradiction. This method of proof has also been presented by Shoenfield (1967, p. 132); Charlesworth (1980); and Hopcroft and Ullman (1979).

Franzén (2005, p. 73) explains how Matiyasevich's solution to Hilbert's 10th problem can be used to obtain a proof to Gödel's first incompleteness theorem. Matiyasevich proved that there is no algorithm that, given a multivariate polynomial p(x1, x2,...,xk) with integer coefficients, determines whether there is an integer solution to the equation p = 0. Because polynomials with integer coefficients, and integers themselves, are directly expressible in the language of arithmetic, if a multivariate integer polynomial equation p = 0 does have a solution in the integers then any sufficiently strong theory of arithmetic T will prove this. Moreover, if the theory T is ω-consistent, then it will never prove that a particular polynomial equation has a solution when in fact there is no solution in the integers. Thus, if T were complete and ω-consistent, it would be possible to determine algorithmically whether a polynomial equation has a solution by merely enumerating proofs of T until either "p has a solution" or "p has no solution" is found, in contradiction to Matiyasevich's theorem. Moreover, for each consistent effectively generated theory T, it is possible to effectively generate a multivariate polynomial p over the integers such that the equation p = 0 has no solutions over the integers, but the lack of solutions cannot be proved in T (Davis 2006:416, Jones 1980).

Smorynski (1977, p. 842) shows how the existence of recursively inseparable sets can be used to prove the first incompleteness theorem. This proof is often extended to show that systems such as Peano arithmetic are essentially undecidable (see Kleene 1967, p. 274).

Chaitin's incompleteness theorem gives a different method of producing independent sentences, based on Kolmogorov complexity. Like the proof presented by Kleene that was mentioned above, Chaitin's theorem only applies to theories with the additional property that all their axioms are true in the standard model of the natural numbers. Gödel's incompleteness theorem is distinguished by its applicability to consistent theories that nonetheless include statements that are false in the standard model; these theories are known as ω-inconsistent.

Read more about this topic:  Bew

Famous quotes containing the words relationship with and/or relationship:

    Some [adolescent] girls are depressed because they have lost their warm, open relationship with their parents. They have loved and been loved by people whom they now must betray to fit into peer culture. Furthermore, they are discouraged by peers from expressing sadness at the loss of family relationships—even to say they are sad is to admit weakness and dependency.
    Mary Pipher (20th century)

    In contrast with envy, which usually occurs between two people and is focused upon another person’s qualities or possessions, jealousy occurs when a third person becomes a threat to a dyad. Jealousy involves the loss or the impending loss of a relationship that one wants to hold onto, a relationship that is vital to personal fulfillment and claimed as one’s own.
    Carol S. Becker (b. 1942)