Beth Number - Definition

Definition

To define the beth numbers, start by letting

be the cardinality of any countably infinite set; for concreteness, take the set of natural numbers to be a typical case. Denote by P(A) the power set of A, i.e., the set of all subsets of A. Then define

which is the cardinality of the power set of A if is the cardinality of A.

Given this definition,

are respectively the cardinalities of

so that the second beth number is equal to, the cardinality of the continuum, and the third beth number is the cardinality of the power set of the continuum.

Because of Cantor's theorem each set in the preceding sequence has cardinality strictly greater than the one preceding it. For infinite limit ordinals λ the corresponding beth number is defined as the supremum of the beth numbers for all ordinals strictly smaller than λ:

One can also show that the von Neumann universes have cardinality .

Read more about this topic:  Beth Number

Famous quotes containing the word definition:

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)