Bessel Filter - Example

Example

The transfer function for a third-order (three-pole) Bessel low-pass filter, normalized to have unit group delay, is

The roots of the denominator polynomial, the filter's poles, include a real pole at s = −2.3222, and a complex-conjugate pair of poles at s = −1.8389 ± j1.7544, plotted above. The numerator 15 is chosen to give a gain of 1 at DC (at s = 0).

The gain is then

The phase is

\phi(\omega)=-\arg(H(j\omega))=
-\arctan\left(\frac{15\omega-\omega^3}{15-6\omega^2}\right). \,

The group delay is

D(\omega)=-\frac{d\phi}{d\omega} =
\frac{6 \omega^4+ 45 \omega^2+225}{\omega^6+6\omega^4+45\omega^2+225}. \,

The Taylor series expansion of the group delay is

Note that the two terms in ω2 and ω4 are zero, resulting in a very flat group delay at ω = 0. This is the greatest number of terms that can be set to zero, since there are a total of four coefficients in the third order Bessel polynomial, requiring four equations in order to be defined. One equation specifies that the gain be unity at ω = 0 and a second specifies that the gain be zero at ω = ∞, leaving two equations to specify two terms in the series expansion to be zero. This is a general property of the group delay for a Bessel filter of order n: the first n − 1 terms in the series expansion of the group delay will be zero, thus maximizing the flatness of the group delay at ω = 0.

Read more about this topic:  Bessel Filter

Famous quotes containing the word example:

    Our intellect is not the most subtle, the most powerful, the most appropriate, instrument for revealing the truth. It is life that, little by little, example by example, permits us to see that what is most important to our heart, or to our mind, is learned not by reasoning but through other agencies. Then it is that the intellect, observing their superiority, abdicates its control to them upon reasoned grounds and agrees to become their collaborator and lackey.
    Marcel Proust (1871–1922)