Jaynes' Solution Using The "maximum Ignorance" Principle
In his 1973 paper The Well-Posed Problem, Edwin Jaynes proposed a solution to Bertrand's paradox, based on the principle of "maximum ignorance"—that we should not use any information that is not given in the statement of the problem. Jaynes pointed out that Bertrand's problem does not specify the position or size of the circle, and argued that therefore any definite and objective solution must be "indifferent" to size and position. In other words: the solution must be both scale invariant and translation invariant.
To illustrate: assume that chords are laid at random onto a circle with a diameter of 2, for example by throwing straws onto it from far away. Now another circle with a smaller diameter (e.g., 1.1) is laid into the larger circle. Then the distribution of the chords on that smaller circle needs to be the same as on the larger circle. If the smaller circle is moved around within the larger circle, the probability must not change either. It can be seen very easily that there would be a change for method 3: the chord distribution on the small red circle looks qualitatively different from the distribution on the large circle:
The same occurs for method 1, though it is harder to see in a graphical representation. Method 2 is the only one that is both scale invariant and translation invariant; method 3 is just scale invariant, method 1 is neither.
However, Jaynes did not just use invariances to accept or reject given methods: this would leave the possibility that there is another not yet described method that would meet his common-sense criteria. Jaynes used the integral equations describing the invariances to directly determine the probability distribution. In this problem, the integral equations indeed have a unique solution, and it is precisely what was called "method 2" above, the random radius method.
Read more about this topic: Bertrand Paradox (probability)
Famous quotes containing the words solution, maximum, ignorance and/or principle:
“Coming out, all the way out, is offered more and more as the political solution to our oppression. The argument goes that, if people could see just how many of us there are, some in very important places, the negative stereotype would vanish overnight. ...It is far more realistic to suppose that, if the tenth of the population that is gay became visible tomorrow, the panic of the majority of people would inspire repressive legislation of a sort that would shock even the pessimists among us.”
—Jane Rule (b. 1931)
“Only at his maximum does an individual surpass all his derivative elements, and become purely himself. And most people never get there. In his own pure individuality a man surpasses his father and mother, and is utterly unknown to them.”
—D.H. (David Herbert)
“Knowledge has two extremes. The first is the pure natural ignorance in which all men find themselves at birth. The other extreme is that reached by great minds, who, having run through all that men can know, find they know nothing, and come back again to that same natural ignorance from which they set out; this is a learned ignorance which is conscious of itself.”
—Blaise Pascal (16231662)
“A state of war or anarchy, in which law has little force, is so far valuable, that it puts every man on trial. The man of principle is known as such, and even in the fury of faction is respected.”
—Ralph Waldo Emerson (18031882)