Bernstein Polynomial - Definition

Definition

The n + 1 Bernstein basis polynomials of degree n are defined as

where is a binomial coefficient.

The Bernstein basis polynomials of degree n form a basis for the vector space Πn of polynomials of degree at most n.

A linear combination of Bernstein basis polynomials

is called a Bernstein polynomial or polynomial in Bernstein form of degree n. The coefficients are called Bernstein coefficients or Bézier coefficients.

Read more about this topic:  Bernstein Polynomial

Famous quotes containing the word definition:

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)