Bernoulli Number - A Binary Tree Representation

A Binary Tree Representation

The Stirling polynomials σn(x) are related to the Bernoulli numbers by Bn = nn(1). S. C. Woon (Woon 1997) described an algorithm to compute σn(1) as a binary tree.

Woon's tree for σn(1)

Woon's recursive algorithm (for n ≥ 1) starts by assigning to the root node N = . Given a node N = of the tree, the left child of the node is L(N) = and the right child R(N) = . A node N = is written as ± in the initial part of the tree represented above with ± denoting the sign of a1.

Given a node N the factorial of N is defined as

Restricted to the nodes N of a fixed tree-level n the sum of 1/N! is σn(1), thus

For example B1 = 1!(1/2!), B2 = 2!(−1/3! + 1/(2!2!)), B3 = 3!(1/4! − 1/(2!3!) − 1/(3!2!) + 1/(2!2!2!)).

Read more about this topic:  Bernoulli Number

Famous quotes containing the word tree:

    The windy springs and the blazing summers, one after another, had enriched and mellowed that flat tableland; all the human effort that had gone into it was coming back in long, sweeping lines of fertility. The changes seemed beautiful and harmonious to me; it was like watching the growth of a great man or of a great idea. I recognized every tree and sandbank and rugged draw. I found that I remembered the conformation of the land as one remembers the modelling of human faces.
    Willa Cather (1873–1947)