Bernoulli Number - A Binary Tree Representation

A Binary Tree Representation

The Stirling polynomials σn(x) are related to the Bernoulli numbers by Bn = nn(1). S. C. Woon (Woon 1997) described an algorithm to compute σn(1) as a binary tree.

Woon's tree for σn(1)

Woon's recursive algorithm (for n ≥ 1) starts by assigning to the root node N = . Given a node N = of the tree, the left child of the node is L(N) = and the right child R(N) = . A node N = is written as ± in the initial part of the tree represented above with ± denoting the sign of a1.

Given a node N the factorial of N is defined as

Restricted to the nodes N of a fixed tree-level n the sum of 1/N! is σn(1), thus

For example B1 = 1!(1/2!), B2 = 2!(−1/3! + 1/(2!2!)), B3 = 3!(1/4! − 1/(2!3!) − 1/(3!2!) + 1/(2!2!2!)).

Read more about this topic:  Bernoulli Number

Famous quotes containing the word tree:

    I have come to the conclusion that the closer people are to what may be called the front lines of government ... the easier it is to see the immediate underbrush, the individual tree trunks of the moment, and to forget the nobility the usefulness and the wide extent of the forest itself.... They forget that politics after all is only an instrument through which to achieve Government.
    Franklin D. Roosevelt (1882–1945)