Purpose
As computer architecture advanced, it became more difficult to compare the performance of various computer systems simply by looking at their specifications. Therefore, tests were developed that allowed comparison of different architectures. For example, Pentium 4 processors generally operate at a higher clock frequency than Athlon XP processors, which does not necessarily translate to more computational power. A slower processor, with regard to clock frequency, can perform as well as a processor operating at a higher frequency. See BogoMips and the megahertz myth.
Benchmarks are designed to mimic a particular type of workload on a component or system. Synthetic benchmarks do this by specially created programs that impose the workload on the component. Application benchmarks run real-world programs on the system. While application benchmarks usually give a much better measure of real-world performance on a given system, synthetic benchmarks are useful for testing individual components, like a hard disk or networking device.
Benchmarks are particularly important in CPU design, giving processor architects the ability to measure and make tradeoffs in microarchitectural decisions. For example, if a benchmark extracts the key algorithms of an application, it will contain the performance-sensitive aspects of that application. Running this much smaller snippet on a cycle-accurate simulator can give clues on how to improve performance.
Prior to 2000, computer and microprocessor architects used SPEC to do this, although SPEC's Unix-based benchmarks were quite lengthy and thus unwieldy to use intact.
Computer manufacturers are known to configure their systems to give unrealistically high performance on benchmark tests that are not replicated in real usage. For instance, during the 1980s some compilers could detect a specific mathematical operation used in a well-known floating-point benchmark and replace the operation with a faster mathematically-equivalent operation. However, such a transformation was rarely useful outside the benchmark until the mid-1990s, when RISC and VLIW architectures emphasized the importance of compiler technology as it related to performance. Benchmarks are now regularly used by compiler companies to improve not only their own benchmark scores, but real application performance.
CPUs that have many execution units — such as a superscalar CPU, a VLIW CPU, or a reconfigurable computing CPU — typically have slower clock rates than a sequential CPU with one or two execution units when built from transistors that are just as fast. Nevertheless, CPUs with many execution units often complete real-world and benchmark tasks in less time than the supposedly faster high-clock-rate CPU.
Given the large number of benchmarks available, a manufacturer can usually find at least one benchmark that shows its system will outperform another system; the other systems can be shown to excel with a different benchmark.
Manufacturers commonly report only those benchmarks (or aspects of benchmarks) that show their products in the best light. They also have been known to mis-represent the significance of benchmarks, again to show their products in the best possible light. Taken together, these practices are called bench-marketing.
Ideally benchmarks should only substitute for real applications if the application is unavailable, or too difficult or costly to port to a specific processor or computer system. If performance is critical, the only benchmark that matters is the target environment's application suite.
Read more about this topic: Benchmark (computing)
Famous quotes containing the word purpose:
“Let our hearts, as subtle masters do,
Stir up their servants to an act of rage
And after seem to chide em. This shall make
Our purpose necessary, and not envious;
Which so appearing to the common eyes,
We shall be called purgers, not murderers.”
—William Shakespeare (15641616)
“To me the sole hope of human salvation lies in teaching Man to regard himself as an experiment in the realization of God, to regard his hands as Gods hand, his brain as Gods brain, his purpose as Gods purpose. He must regard God as a helpless Longing, which longed him into existence by its desperate need for an executive organ.”
—George Bernard Shaw (18561950)
“Natural selection, the blind, unconscious, automatic process which Darwin discovered, and which we now know is the explanation for the existence and apparently purposeful form of all life, has no purpose in mind. It has no mind and no minds eye. It does not plan for the future. It has no vision, no foresight, no sight at all. If it can be said to play the role of the watchmaker in nature, it is the blind watchmaker.”
—Richard Dawkins (b. 1941)