B,C,K,W System

B,C,K,W System

The B, C, K, W system is a variant of combinatory logic that takes as primitive the combinators B, C, K, and W. This system was discovered by Haskell Curry in his doctoral thesis Grundlagen der kombinatorischen Logik, whose results are set out in Curry (1930).

The combinators are defined as follows:

  • B x y z = x (y z)
  • C x y z = x z y
  • K x y = x
  • W x y = x y y

Intuitively,

  • B x y is the composition of the arguments x and y;
  • C x y z swaps the arguments y and z;
  • K x y discards the argument y;
  • W x y duplicates the argument y.

In recent decades, the SKI combinator calculus, with only two primitive combinators, K and S, has become the canonical approach to combinatory logic. B, C, and W can be expressed in terms of S and K as follows:

  • B = S (K S) K
  • C = S (S (K (S (K S) K)) S) (K K)
  • K = K
  • W = S S (S K)

Going the other direction, SKI can be defined in terms of B,C,K,W as:

  • I = W K
  • K = K
  • S = B (B (B W) C) (B B) = B (B W) (B B C).

Read more about B,C,K,W System:  Connection To Intuitionistic Logic

Famous quotes containing the word system:

    The pace of science forces the pace of technique. Theoretical physics forces atomic energy on us; the successful production of the fission bomb forces upon us the manufacture of the hydrogen bomb. We do not choose our problems, we do not choose our products; we are pushed, we are forced—by what? By a system which has no purpose and goal transcending it, and which makes man its appendix.
    Erich Fromm (1900–1980)