In mathematics, a basis function is an element of a particular basis for a function space. Every continuous function in the function space can be represented as a linear combination of basis functions, just as every vector in a vector space can be represented as a linear combination of basis vectors.
In numerical analysis and approximation theory, basis functions are also called blending functions, because of their use in interpolation: In this application, a mixture of the basis functions provides an interpolating function (with the "blend" depending on the evaluation of the basis functions at the data points).
Famous quotes containing the words basis and/or function:
“Our fathers and grandfathers who poured over the Midwest were self-reliant, rugged, God-fearing people of indomitable courage.... They asked only for freedom of opportunity and equal chance. In these conceptions lies the real basis of American democracy. They and their fathers give a genius to American institutions that distinguished our people from any other in the world.”
—Herbert Hoover (18741964)
“Philosophical questions are not by their nature insoluble. They are, indeed, radically different from scientific questions, because they concern the implications and other interrelations of ideas, not the order of physical events; their answers are interpretations instead of factual reports, and their function is to increase not our knowledge of nature, but our understanding of what we know.”
—Susanne K. Langer (18951985)