Barotropic Fluid

In fluid dynamics, a barotropic fluid is a fluid whose density is a function of only pressure (or vice versa). Barotropic fluids are useful model for fluid behavior in a wide variety of scientific fields, from meteorology to astrophysics.

In astrophysics, barotropic fluids are important in the study of stellar interiors or of the interstellar medium. One common class of barotropic model used in astrophysics is a polytropic fluid. Typically, the barotropic assumption is not very realistic.

In meteorology, a barotropic atmosphere is one in which the pressure depends only on the density and vice versa, so that isobaric surfaces (constant-pressure surfaces) are also isopycnic surfaces (constant-density surfaces). The isobaric surfaces will also be isothermal surfaces, hence (from the thermal wind equation) the geostrophic wind is independent of height. Hence the motions of a rotating barotropic air mass or fluid are strongly constrained.

A barotropic flow is a generalization of the barotropic atmosphere. It is a flow in which the pressure is a function of the density only and vice versa. In other words, it is a flow in which isobaric surfaces are isopycnic surfaces and vice versa. One may have a barotropic flow with a non-barotropic fluid, but a barotropic fluid must always follow a barotropic flow. Examples include barotropic layers of the oceans, an isothermal ideal gas or an isentropic ideal gas.

Contrast baroclinic. In particular, for a barotropic fluid or a barotropic flow (such as a barotropic atmosphere), the baroclinic vector is always zero.

Famous quotes containing the word fluid:

    It is more than likely that the brain itself is, in origin and development, only a sort of great clot of genital fluid held in suspense or reserved.... This hypothesis ... would explain the enormous content of the brain as a maker or presenter of images.
    Ezra Pound (1885–1972)