Baroreceptor - Arterial (high-pressure) Baroreceptors

Arterial (high-pressure) Baroreceptors

Arterial baroreceptors are located in the transverse aortic arch and the carotid sinuses of the left and right internal carotid arteries. The baroreceptors found within the aortic arch monitor the pressure of blood delivered to the systemic circuit, and the baroreceptors within the carotid arteries monitor the pressure of the blood being delivered to the brain.

Arterial baroreceptors are stretch receptors that are stimulated by distortion of the arterial wall when pressure changes. The baroreceptors can identify the changes in both the average blood pressure or the rate of change in pressure with each arterial pulse. Action potentials triggered in the baroreceptor ending are then conducted to the brainstem where central terminations (synapses) transmit this information to neurons within the solitary nucleus. Reflex responses from such baroreceptor activity can trigger increases or decreases in the heart rate. Arterial baroreceptor sensory endings are simple, sprayed nerve endings that lie in the tunica adventitia of the artery. An increase in the mean arterial pressure increases depolarization of these sensory endings, which results in action potentials. These action potentials are conducted to the solitary nucleus in the central nervous system by axons and have a reflex effect on the cardiovascular system through autonomic neurons. Hormone secretions that target the heart and blood vessels are affected by the stimulation of baroreceptors.

At normal resting blood pressures, baroreceptors discharge with each heart beat. If blood pressure falls, such as on orthostatic hypotension or in hypovolaemic shock, baroreceptor firing rate decreases and baroreceptor reflexes act to help restore blood pressure by increasing heart rate. Signals from the carotid baroreceptors are sent via the glossopharyngeal nerve (cranial nerve IX). Signals from the aortic baroreceptors travel through the vagus nerve (cranial nerve X). Arterial baroreceptors inform reflexes about arterial blood pressure but other stretch receptors in the large veins and right atrium convey information about the low pressure parts of the circulatory system.

Baroreceptors respond very quickly to maintain a stable blood pressure, but their responses diminish with time and thus are most effective for conveying short term changes in blood pressure. In people with essential hypertension the baroreceptors and their reflexes change and function to maintain the elevated blood pressure as if normal. The receptors then become less sensitive to change.

Read more about this topic:  Baroreceptor