Matrix Bandwidth
Formally, consider an n×n matrix A=(ai,j ). If all matrix elements are zero outside a diagonally bordered band whose range is determined by constants k1 and k2:
then the quantities k1 and k2 are called the left and right half-bandwidth, respectively (Golub & Van Loan 1996, §1.2.1). The bandwidth of the matrix is k1 + k2 + 1 (in other words, it is the smallest number of adjacent diagonals to which the non-zero elements are confined).
A matrix is called a band matrix or banded matrix if its bandwidth is reasonably small.
A band matrix with k1 = k2 = 0 is a diagonal matrix; a band matrix with k1 = k2 = 1 is a tridiagonal matrix; when k1 = k2 = 2 one has a pentadiagonal matrix and so on. If one puts k1 = 0, k2 = n−1, one obtains the definition of an upper triangular matrix; similarly, for k1 = n−1, k2 = 0 one obtains a lower triangular matrix.
Read more about this topic: Band Matrix
Famous quotes containing the word matrix:
“The matrix is God?
In a manner of speaking, although it would be more accurate ... to say that the matrix has a God, since this beings omniscience and omnipotence are assumed to be limited to the matrix.
If it has limits, it isnt omnipotent.
Exactly.... Cyberspace exists, insofar as it can be said to exist, by virtue of human agency.”
—William Gibson (b. 1948)