Topological Balls
One may talk about balls in any topological space X, not necessarily induced by a metric. An (open or closed) n-dimensional topological ball of X is any subset of X which is homeomorphic to an (open or closed) Euclidean n-ball. Topological n-balls are important in combinatorial topology, as the building blocks of cell complexes.
Any open topological n-ball is homeomorphic to the Cartesian space Rn and to the open unit n-cube . Any closed topological n-ball is homeomorphic to the closed n-cube n.
An n-ball is homeomorphic to an m-ball if and only if n = m. The homeomorphisms between an open n-ball B and Rn can be classified in two classes, that can be identified with the two possible topological orientations of B.
A topological n-ball need not be smooth; if it is smooth, it need not be diffeomorphic to a Euclidean n-ball.
Read more about this topic: Ball (mathematics)
Famous quotes containing the word balls:
“If the head is lost, all that perishes is the individual; if the balls are lost, all of human nature perishes.”
—François Rabelais (14941553)