Formal Statement
In the formal language of the Zermelo–Fraenkel axioms, the axiom reads:
or in words:
- Given any set A and any set B, if for every set C, C is a member of A if and only if C is a member of B, then A is equal to B.
(It is not really essential that C here be a set — but in ZF, everything is. See Ur-elements below for when this is violated.)
The converse, of this axiom follows from the substitution property of equality.
Read more about this topic: Axiom Of Extensionality
Famous quotes containing the words formal and/or statement:
“The spiritual kinship between Lincoln and Whitman was founded upon their Americanism, their essential Westernism. Whitman had grown up without much formal education; Lincoln had scarcely any education. One had become the notable poet of the day; one the orator of the Gettsyburg Address. It was inevitable that Whitman as a poet should turn with a feeling of kinship to Lincoln, and even without any association or contact feel that Lincoln was his.”
—Edgar Lee Masters (18691950)
“The force of truth that a statement imparts, then, its prominence among the hordes of recorded observations that I may optionally apply to my own life, depends, in addition to the sense that it is argumentatively defensible, on the sense that someone like me, and someone I like, whose voice is audible and who is at least notionally in the same room with me, does or can possibly hold it to be compellingly true.”
—Nicholson Baker (b. 1957)