In the mathematical subject of knot theory, the average crossing number of a knot is the result of averaging over all directions the number of crossings in a knot diagram of the knot obtained by projection onto the plane orthogonal to the direction. The average crossing number is often seen in the context of physical knot theory.
More precisely, if K is a smooth knot, then for almost every unit vector v giving the direction, orthogonal projection onto the plane perpendicular to v gives a knot diagram, and we can compute the crossing number, denoted n(v). The average crossing number is then defined as the integral over the unit sphere:
where dA is the area form on the 2-sphere. The integral makes sense because the set of directions where projection doesn't give a knot diagram is a set of measure zero and n(v) is locally constant when defined.
A less intuitive but computationally useful definition is an integral similar to the Gauss linking integral.
We will give a derivation analogous to the derivation of the linking integral. Let K be a knot, parametrized by
Then define the map from the torus to the 2-sphere
by
(Technically, we need to avoid the diagonal: points where s = t .) We want to count the number of times a point (direction) is covered by g. This will count, for a generic direction, the number of crossings in a knot diagram given by projecting along that direction. Using the degree of the map, as in the linking integral, would count the number of crossings with sign, giving the writhe. Use g to pullback the area form on S2 to the torus T2 = S1 × S1. Instead of integrating this form, we integrate the absolute value of it, to avoid the sign issue. The resulting integral is
Read more about Average Crossing Number: Further Reading
Famous quotes containing the words average, crossing and/or number:
“And since the average lifetimethe relative longevityis far greater for memories of poetic sensations than for those of heartbreaks, since the very long time that the grief I felt then because of Gilbert, it has been outlived by the pleasure I feel, whenever I wish to read, as in a sort of sundial, the minutes between twelve fifteen and one oclock, in the month of May, upon remembering myself chatting ... with Madame Swann under the reflection of a cradle of wisteria.”
—Marcel Proust (18711922)
“Twenty men crossing a bridge,
Into a village,
Are twenty men crossing twenty bridges,
Into twenty villages,
Or one man
Crossing a single bridge into a village.”
—Wallace Stevens (18791955)
“Computers are good at swift, accurate computation and at storing great masses of information. The brain, on the other hand, is not as efficient a number cruncher and its memory is often highly fallible; a basic inexactness is built into its design. The brains strong point is its flexibility. It is unsurpassed at making shrewd guesses and at grasping the total meaning of information presented to it.”
—Jeremy Campbell (b. 1931)