# Atmospheric Dispersion Modeling

Atmospheric dispersion modeling is the mathematical simulation of how air pollutants disperse in the ambient atmosphere. It is performed with computer programs that solve the mathematical equations and algorithms which simulate the pollutant dispersion. The dispersion models are used to estimate or to predict the downwind concentration of air pollutants or toxins emitted from sources such as industrial plants, vehicular traffic or accidental chemical releases.

Such models are important to governmental agencies tasked with protecting and managing the ambient air quality. The models are typically employed to determine whether existing or proposed new industrial facilities are or will be in compliance with the National Ambient Air Quality Standards (NAAQS) in the United States and other nations. The models also serve to assist in the design of effective control strategies to reduce emissions of harmful air pollutants.

Air dispersion models are also used by public safety responders and emergency management personnel for emergency planning of accidental chemical releases. Models are used to determine the consequences of accidental releases of hazardous or toxic materials, Accidental releases may result fires, spills or explosions that involve hazardous materials, such as chemicals or radionuclides. The results of dispersion modeling, using worst case accidental release source terms and meteorological conditions, can provide an estimate of location impacted areas, ambient concentrations, and be used to determine protective actions appropriate in the event a release occurs. Appropriate protective actions may include evacuation or shelter-in-place for persons in the downwind direction. At industrial facilities, this type of consequence assessment or emergency planning is required under the Clean Air Act (United States) (CAA) codified in part 60 of Title 40 of the Code of Federal Regulations.

The dispersion models vary depending on the mathematics used to develop the model, but all require the input of data that may include:

• Meteorological conditions such as wind speed and direction, the amount of atmospheric turbulence (as characterized by what is called the "stability class"), the ambient air temperature, the height to the bottom of any inversion aloft that may be present, cloud cover and solar radiation.
• Source term (the concentration or quantity of toxins in emission or accidental release source terms) and temperature of the material
• Emissions or release parameters such as source location and height, type of source (i.e., fire, pool or vent stack)and exit velocity, exit temperature and mass flow rate or release rate.
• Terrain elevations at the source location and at the receptor location(s), such as nearby homes, schools, businesses and hospitals.
• The location, height and width of any obstructions (such as buildings or other structures) in the path of the emitted gaseous plume, surface roughness or the use of a more generic parameter “rural” or “city” terrain.

Many of the modern, advanced dispersion modeling programs include a pre-processor module for the input of meteorological and other data, and many also include a post-processor module for graphing the output data and/or plotting the area impacted by the air pollutants on maps. The plots of areas impacted may also include isopleths showing areas of minimal to high concentrations that define areas of the highest health risk. The isopleths plots are useful in determining protective actions for the public and responders.

The atmospheric dispersion models are also known as atmospheric diffusion models, air dispersion models, air quality models, and air pollution dispersion models.

Read more about Atmospheric Dispersion Modeling:  Atmospheric Layers, Gaussian Air Pollutant Dispersion Equation, Briggs Plume Rise Equations

### Famous quotes containing the words atmospheric, dispersion and/or modeling:

Nor has science sufficient humanity, so long as the naturalist overlooks the wonderful congruity which subsists between man and the world; of which he is lord, not because he is the most subtile inhabitant, but because he is its head and heart, and finds something of himself in every great and small thing, in every mountain stratum, in every new law of color, fact of astronomy, or atmospheric influence which observation or analysis lay open.
Ralph Waldo Emerson (1803–1882)

The slogan offers a counterweight to the general dispersion of thought by holding it fast to a single, utterly succinct and unforgettable expression, one which usually inspires men to immediate action. It abolishes reflection: the slogan does not argue, it asserts and commands.
Johan Huizinga (1872–1945)

The computer takes up where psychoanalysis left off. It takes the ideas of a decentered self and makes it more concrete by modeling mind as a multiprocessing machine.
Sherry Turkle (b. 1948)