Definition
Formally, a binary operation on a set S is called associative if it satisfies the associative law:
- Using * to denote a binary operation performed on a set
- An example of multiplicative associativity
The evaluation order does not affect the value of such expressions, and it can be shown that the same holds for expressions containing any number of operations. Thus, when is associative, the evaluation order can be left unspecified without causing ambiguity, by omitting the parentheses and writing simply:
However, it is important to remember that changing the order of operations does not involve or permit moving the operands around within the expression; the sequence of operands is always unchanged.
The associative law can also be expressed in functional notation thus : .
Associativity can be generalized to n-ary operations. Ternary associativity is (abc)de = a(bcd)e = ab(cde), i.e. the string abcde with any three adjacent elements bracketed. N-ary associativity is a string of length n+(n-1) with any n adjacent elements bracketed.
Read more about this topic: Associative Property
Famous quotes containing the word definition:
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.”
—The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on life (based on wording in the First Edition, 1935)
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)