Association Scheme - Definition

Definition

An n-class association scheme consists of a set X together with a partition S of X × X into n + 1 binary relations, R0, R1, ..., Rn which satisfy:

  • and is called the Identity relation.
  • Defining, if R in S, then R* in S
  • If, the number of such that and is a constant depending on, but not on the particular choice of and .

An association scheme is commutative if for all, and . Most authors assume this property.

A symmetric association scheme is one in which each relation is a symmetric relation. That is:

  • if (x,y) ∈ Ri, then (y,x) ∈ Ri . (Or equivalently, R* = R.)

Every symmetric association scheme is commutative.

Note, however, that while the notion of an association scheme generalizes the notion of a group, the notion of a commutative association scheme only generalizes the notion of a commutative group.


Two points x and y are called i th associates if . The definition states that if x and y are i th associates so are y and x. Every pair of points are i th associates for exactly one . Each point is its own zeroth associate while distinct points are never zeroth associates. If x and y are k th associates then the number of points which are both i th associates of and j th associates of is a constant .

Read more about this topic:  Association Scheme

Famous quotes containing the word definition:

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)