Association Scheme - Coding Theory

Coding Theory

The Hamming scheme and the Johnson scheme are of major significance in classical coding theory.

In coding theory, association scheme theory is mainly concerned with the distance of a code. The linear programming method produces upper bounds for the size of a code with given minimum distance, and lower bounds for the size of a design with a given strength. The most specific results are obtained in the case where the underlying association scheme satisfies certain polynomial properties; this leads one into the realm of orthogonal polynomials. In particular, some universal bounds are derived for codes and designs in polynomial-type association schemes.

In classical coding theory, dealing with codes in a Hamming scheme, the MacWilliams transform involves a family of orthogonal polynomials known as the Krawtchouk polynomials. These polynomials give the eigenvalues of the distance relation matrices of the Hamming scheme.

Read more about this topic:  Association Scheme

Famous quotes containing the word theory:

    There could be no fairer destiny for any physical theory than that it should point the way to a more comprehensive theory in which it lives on as a limiting case.
    Albert Einstein (1879–1955)