In mathematics, the theory of fiber bundles with a structure group (a topological group) allows an operation of creating an associated bundle, in which the typical fiber of a bundle changes from to, which are both topological spaces with a group action of . For a fibre bundle F with structure group G, the transition functions of the fibre (i.e., the cocycle) in an overlap of two coordinate systems Uα and Uβ are given as a G-valued function gαβ on Uα∩Uβ. One may then construct a fibre bundle F′ as a new fibre bundle having the same transition functions, but possibly a different fibre.
Read more about Associated Bundle: An Example, Construction, Reduction of The Structure Group
Famous quotes containing the word bundle:
“In the quilts I had found good objectshospitable, warm, with soft edges yet resistant, with boundaries yet suggesting a continuous safe expanse, a field that could be bundled, a bundle that could be unfurled, portable equipment, light, washable, long-lasting, colorful, versatile, functional and ornamental, private and universal, mine and thine.”
—Radka Donnell-Vogt, U.S. quiltmaker. As quoted in Lives and Works, by Lynn F. Miller and Sally S. Swenson (1981)