Complex Arrangements
In complex affine space (which is hard to visualize because even the complex affine plane has four real dimensions), the complement is connected (all one piece) with holes where the hyperplanes were removed.
A typical problem about an arrangement in complex space is to describe the holes.
The basic theorem about complex arrangements is that the cohomology of the complement M(A) is completely determined by the intersection semilattice. To be precise, the cohomology ring of M(A) (with integer coefficients) is isomorphic to the Orlik-Solomon algebra on Z.
The isomorphism can be described rather explicitly, and gives a presentation of the cohomology in terms of generators and relations, where generators are represented (in the de Rham cohomology) as logarithmic differential forms
with any linear form defining the generic hyperplane of the arrangement.
Read more about this topic: Arrangement Of Hyperplanes
Famous quotes containing the words complex and/or arrangements:
“Power is not an institution, and not a structure; neither is it a certain strength we are endowed with; it is the name that one attributes to a complex strategical situation in a particular society.”
—Michel Foucault (19261984)
“Autonomy means women defining themselves and the values by which they will live, and beginning to think of institutional arrangements which will order their environment in line with their needs.... Autonomy means moving out from a world in which one is born to marginality, to a past without meaning, and a future determined by othersinto a world in which one acts and chooses, aware of a meaningful past and free to shape ones future.”
—Gerda Lerner (b. 1920)