Arnoldi Iteration - Finding Eigenvalues With The Arnoldi Iteration

Finding Eigenvalues With The Arnoldi Iteration

The idea of the Arnoldi iteration as an eigenvalue algorithm is to compute the eigenvalues of the orthogonal projection of A onto the Krylov subspace. This projection is represented by Hn. The eigenvalues of Hn are called the Ritz eigenvalues. Since Hn is a Hessenberg matrix of modest size, its eigenvalues can be computed efficiently, for instance with the QR algorithm.

It is often observed in practice that some of the Ritz eigenvalues converge to eigenvalues of A. Since Hn is n-by-n, it has at most n eigenvalues, and not all eigenvalues of A can be approximated. Typically, the Ritz eigenvalues converge to the extreme eigenvalues of A. This can be related to the characterization of Hn as the matrix whose characteristic polynomial minimizes ||p(A)q1|| in the following way. A good way to get p(A) small is to choose the polynomial p such that p(x) is small whenever x is an eigenvalue of A. Hence, the zeros of p (and thus the Ritz eigenvalues) will be close to the eigenvalues of A.

However, the details are not fully understood yet. This is in contrast to the case where A is symmetric. In that situation, the Arnoldi iteration becomes the Lanczos iteration, for which the theory is more complete.

Read more about this topic:  Arnoldi Iteration

Famous quotes containing the word finding:

    In the middle years of childhood, it is more important to keep alive and glowing the interest in finding out and to support this interest with skills and techniques related to the process of finding out than to specify any particular piece of subject matter as inviolate.
    Dorothy H. Cohen (20th century)