Arithmetical Hierarchy - The Arithmetical Hierarchy of Sets of Natural Numbers

The Arithmetical Hierarchy of Sets of Natural Numbers

A set X of natural numbers is defined by formula φ in the language of Peano arithmetic if the elements of X are exactly the numbers that satisfy φ. That is, for all natural numbers n,

where is the numeral in the language of arithmetic corresponding to . A set is definable in first order arithmetic if it is defined by some formula in the language of Peano arithmetic.

Each set X of natural numbers that is definable in first order arithmetic is assigned classifications of the form, and, where is a natural number, as follows. If X is definable by a formula then X is assigned the classification . If X is definable by a formula then X is assigned the classification . If X is both and then is assigned the additional classification .

Note that it rarely makes sense to speak of formulas; the first quantifier of a formula is either existential or universal. So a set is not defined by a formula; rather, there are both and formulas that define the set.

A parallel definition is used to define the arithmetical hierarchy on finite Cartesian powers of the natural numbers. Instead of formulas with one free variable, formulas with k free number variables are used to define the arithmetical hierarchy on sets of k-tuples of natural numbers.

Read more about this topic:  Arithmetical Hierarchy

Famous quotes containing the words hierarchy, sets, natural and/or numbers:

    In a hierarchy every employee tends to rise to his level of incompetence.
    Laurence J. Peter (1919–1990)

    It provokes the desire but it takes away the performance. Therefore much drink may be said to be an equivocator with lechery: it makes him and it mars him; it sets him on and it takes him off.
    William Shakespeare (1564–1616)

    The home is a woman’s natural background.... From the beginning I tried to have the policy of the store reflect as nearly as it was possible in the commercial world, those standards of comfort and grace which are apparent in a lovely home.
    Hortense Odlum (1892–?)

    Publishers are notoriously slothful about numbers, unless they’re attached to dollar signs—unlike journalists, quarterbacks, and felony criminal defendents who tend to be keenly aware of numbers at all times.
    Hunter S. Thompson (b. 1939)